Supports of Irreducible Spherical Representations of Rational Cherednik Algebras of Finite Coxeter Groups

نویسنده

  • PAVEL ETINGOF
چکیده

In this paper we determine the support of the irreducible spherical representation (i.e., the irreducible quotient of the polynomial representation) of the rational Cherednik algebra of a finite Coxeter group for any value of the parameter c. In particular, we determine for which values of c this representation is finite dimensional. This generalizes a result of Varagnolo and Vasserot, [VV], who classified finite dimensional spherical representations in the case of Weyl groups and equal parameters (i.e., when c is a constant function). Our proof is based on the Macdonald-Mehta integral and the elementary theory of distributions. The organization of the paper is as follows. Section 2 contains preliminaries on Coxeter groups and Cherednik algebras. In Section 3 we state and prove the main result in the case of equal parameters. In Section 4 we deal with the remaining case of irreducible Coxeter groups with two conjugacy classes of reflections. Finally, in the appendix, written by Stephen Griffeth, it is shown by a uniform argument (using only the theory of finite reflection groups) that our classification of finite dimensional spherical representations of rational Cherednik algebras with equal parameters coincides with that of Varagnolo and Vasserot. Acknowledgements. It is my great pleasure to dedicate this paper to my father Ilya Etingof on his 80-th birthday. His selflessness and wisdom made him my main role model, and have guided me throughout my life. This work was partially supported by the NSF grants DMS-0504847 and DMS-0854764.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasiharmonic Polynomials for Coxeter Groups and Representations of Cherednik Algebras

We introduce and study deformations of finite-dimensional modules over rational Cherednik algebras. Our main tool is a generalization of usual harmonic polynomials for each Coxeter groups — the so-called quasiharmonic polynomials. A surprising application of this approach is the construction of canonical elementary symmetric polynomials and their deformations for all Coxeter groups.

متن کامل

The Dunkl Weight Function for Rational Cherednik Algebras

In this paper we prove the existence of the Dunkl weight function Kc,λ for any irreducible representation λ of any finite Coxeter group W , generalizing previous results of Dunkl. In particular, Kc,λ is a family of tempered distributions on the real reflection representation of W taking values in EndC(λ), with holomorphic dependence on the complex multi-parameter c. When the parameter c is real...

متن کامل

Representations of rational Cherednik algebras of rank 1 in positive characteristic

Let Γ ⊂ SL2(C) be a finite subgroup, and r be the number of conjugacy classes of Γ. Let D be the algebra of polynomial differential operators in one variable with complex coefficients. In the paper [CBH98], CrawleyBoevey and Holland introduced an r-parameter family of algebras Ht,c1,...,cr−1 over C, which is a universal deformation of the semidirect product algebra CΓ ⋉ D. They also described t...

متن کامل

Parabolic Degeneration of Rational Cherednik Algebras

We introduce parabolic degenerations of rational Cherednik algebras of complex reflection groups, and use them to give necessary conditions for finite-dimensionality of an irreducible lowest weight module for the rational Cherednik algebra of a complex reflection group, and for the existence of a non-zero map between two standard modules. The latter condition reproduces and enhances, in the cas...

متن کامل

Cylindrical Combinatorics and Representations of Cherednik Algebras of Type A

We investigate the representation theory of the rational and trigonometric Cherednik algebra of type GLn by means of combinatorics on periodic (or cylindrical) skew diagrams. We introduce and study standard tableaux and plane partitions on periodic diagrams, and in particular, compute some generating functions concerning plane partitions, where Kostka polynomials and their level restricted gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009